Impact of Amino Acid Substitutions in B Subunit of DNA Gyrase in Mycobacterium leprae on Fluoroquinolone Resistance
نویسندگان
چکیده
BACKGROUND Ofloxacin is a fluoroquinolone (FQ) used for the treatment of leprosy. FQs are known to interact with both A and B subunits of DNA gyrase and inhibit supercoiling activity of this enzyme. Mutations conferring FQ resistance have been reported to be found only in the gene encoding A subunit of this enzyme (gyrA) of M. leprae, although there are many reports on the FQ resistance-associated mutation in gyrB in other bacteria, including M. tuberculosis, a bacterial species in the same genus as M. leprae. METHODOLOGY/PRINCIPAL FINDINGS To reveal the possible contribution of mutations in gyrB to FQ resistance in M. leprae, we examined the inhibitory activity of FQs against recombinant DNA gyrases with amino acid substitutions at position 464, 502 and 504, equivalent to position 461, 499 and 501 in M. tuberculosis, which are reported to contribute to reduced sensitivity to FQ. The FQ-inhibited supercoiling assay and FQ-induced cleavage assay demonstrated the important roles of these amino acid substitutions in reduced sensitivity to FQ with marked influence by amino acid substitution, especially at position 502. Additionally, effectiveness of sitafloxacin, a FQ, to mutant DNA gyrases was revealed by low inhibitory concentration of this FQ. SIGNIFICANCE Data obtained in this study suggested the possible emergence of FQ-resistant M. leprae with mutations in gyrB and the necessity of analyzing both gyrA and gyrB for an FQ susceptibility test. In addition, potential use of sitafloxacin for the treatment of problematic cases of leprosy by FQ resistant M. leprae was suggested.
منابع مشابه
Influence of lineage-specific amino acid dimorphisms in GyrA on Mycobacterium tuberculosis resistance to fluoroquinolones.
We conducted in vitro DNA supercoiling assays, utilizing recombinant DNA gyrases, to elucidate the influence of the lineage-specific serine or threonine residue at position 95 of GyrA on fluoroquinolone resistance in Mycobacterium tuberculosis. There was little effect of the GyrA-Ala74Ser amino acid substitution on activity of the GyrA-Ser95 gyrase, while activity of the GyrA-Asp94Gly-Ser95...
متن کاملFluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis.
Fluoroquinolones are potent antibacterial agents being used clinically against multidrug-resistant tuberculosis. Treatment failure is thought to arise from acquisition of fluoroquinolone resistance by Mycobacterium tuberculosis. A collection of 13 resistant clinical isolates of M. tuberculosis was examined for ciprofloxacin sensitivity relative to controls exhibiting the same IS6110 DNA type. S...
متن کاملResistance of M. leprae to Quinolones: A Question of Relativity?
UNLABELLED Multidrug resistant leprosy, defined as resistance to rifampin, dapsone and fluoroquinolones (FQ), has been described in Mycobacterium leprae. However, the in vivo impact of fluoroquinolone resistance, mainly mediated by mutations in DNA gyrase (GyrA2GyrB2), has not been precisely assessed. Our objective was to measure the impact of a DNA gyrase mutation whose implication in fluoroqu...
متن کاملMechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus.
Fluoroquinolone resistance in Staphylococcus aureus results from amino acid substitutions at particular locations in the DNA gyrase A and B subunits as well as in the topoisomerase IV A subunit and from NorA-mediated efflux. More than one resistance mechanism may be present in a single strain. Fluoroquinolone-resistant derivatives of SA-1199, a methicillin-susceptible S. aureus strain, were sel...
متن کاملDNA gyrase inhibition assays are necessary to demonstrate fluoroquinolone resistance secondary to gyrB mutations in Mycobacterium tuberculosis.
The main mechanism of fluoroquinolone (FQ) resistance in Mycobacterium tuberculosis is mutation in DNA gyrase (GyrA(2)GyrB(2)), especially in gyrA. However, the discovery of unknown mutations in gyrB whose implication in FQ resistance is unclear has become more frequent. We investigated the impact on FQ susceptibility of eight gyrB mutations in M. tuberculosis clinical strains, three of which w...
متن کامل